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ABSTRACT

Embedded systems are becoming increasingly complex with shortening time-to-

market demands. System-level modeling and design have been proposed to help embedded

system development keep pace with this complexity. In a system-level design environment,

a designer is able to delay critical design decisions until late in the design cycle, reducing the

risk of making incorrect decisions which could require a costly redesign. New methods of

estimating system-level performance must be devised to accommodate these needs.

In embedded systems composed of off-the-shelf parts, performance can be roughly

estimated using part documentation. However, this process can provide poor estimates.

Additionally, if the design includes a custom part, there may not be detailed documentation

from which to gather performance estimates. The exhaustive gathering of estimates is error

prone and tedious. In this thesis we present a novel estimation technique called minimal

characterization for creating system-level estimation metrics. We show that estimates can be

orders of magnitude more accurate, without any loss in fidelity, using a small number of

source-level metrics. We show results from applying a source-level performance estimation

technique generally used on software systems to a system-level design that is implemented in

both software and hardware targets. Finally, we present a categorization of secondary

execution factors which can greatly affect the accuracy of system-level estimates but have

only been peripherally addressed in other approaches.
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CHAPTER 1. OVERVIEW

Traditionally embedded systems are designed in a waterfall approach, where the

hardware platform is first chosen with little concrete evidence that the hardware will achieve

design goals. Software implementation often cannot begin until the hardware platform has

been determined, and in some cases the software implementation must wait for the physical

hardware platform to be finalized. It is only after the software is then implemented that the

system designer has a first chance to measure the performance of the system. If the chosen

hardware platform cannot supply the needed processing resources for the embedded

application to meet its requirements, the entire design cycle must be restarted. Embedded

system designers are turning to tools to keep productivity high while facing ever-increasing

complexity and shortening time-to-market deadlines.

1.1 Introduction

The embedded design industry needs a completely new level of abstraction that hides

details from designers and allows design decisions to be delayed as late as possible in the

design cycle. To address this new level of abstraction, system-level design (SLD) languages

and tools have been implemented, and a new methodology for designing embedded systems

has been created. Delaying decisions, such as selection of processing elements or

interconnect, not only decreases the risk of a redesign, but also allows the platform to be

optimized for the desired behavior and costs. Optimization at the system-level requires new

processing-element agnostic profiling techniques in order to provide as much information as

possible, as early in the design as possible, without forcing the designer to commit to a
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design decision. With efficient profiling techniques, a system-level design tool can even

make design decisions automatically, choosing which functionality requires a dedicated

hardware resource compared to functionality which can still meet design requirements if run

in a traditional processor. A new type of profiler is needed which will provide just enough

information to make the correct decision with the information available, without providing

too much information that has cost the designer either time or implementation.

1.2 Motivation

The system-level profiler contemporary embedded designs require has several design

constraints. It must work at all levels of abstraction, allowing the designer to get useful

information at high levels of abstraction, in addition to determining the final performance of

the system once design decisions are made. It must also be fast enough to allow a

partitioning algorithm to profile large numbers of candidate designs quickly, a task called

design-space exploration. Finally, the profiler must have enough fidelity so that correct

design decisions are made based on feedback from the profiler result.

1.3 Thesis Statement

In order to provide fast and accurate system-level estimates, low-level information

can be obtained from implementation-specific benchmarking. This allows more accurate

estimates at high levels of abstraction. Additionally, the time required to acquire high-level

estimates can be shortened by removing unimportant information. Designers also need to be

aware of all performance effects included in their system-level estimates using a common set
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of execution performance categories so they are able to utilize the system-level estimates

wisely.

1.4 Approach

This thesis discusses several areas in which to improve system-level estimation. We

begin by establishing a common language for estimation abstraction, using categories to

group performance parameters in a system. Next, we use an established estimation technique

which analyzes the system-level design at the source-code level to determine how much

information we can take away from the model without losing estimation accuracy or fidelity.

Finally, we can apply proposed estimation techniques to real performance data to determine

if the resulting estimates provide more value than previously accepted estimates.

1.5 Contributions

The contributions of this paper are:

� A categorical analysis of performance estimation at all levels of abstraction

� A minimal characterization estimation technique reducing the number of necessary

metrics to obtain a performance estimate of a system

� Application of a system-level source code performance analysis to real performance

metrics

1.6 Thesis Organization

We begin by presenting a background of system-level design and system-level

estimation in Chapter 2. Next, Chapter 3 presents the details of execution performance

analysis and provides a discussion on the categories of secondary execution effects in
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system-level estimates. Chapter 4 then develops a method of removing unimportant data

from system-level estimation tables. Chapter 5 applies the developed method to real

performance measurements, and Chapter 6 then presents related work. Finally, Chapter 7

summarizes the work and discusses future work.
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CHAPTER 2. BACKGROUND

As embedded system design become more complicated, it becomes increasingly

difficult to create designs that optimize both performance and cost. In a traditional

workflow, the embedded system’s hardware platform is designed before software work

begins. Because the software is not available, hardware designers must make educated

guesses regarding the computational complexity of their application. In order to guarantee

that the hardware platform will provide the necessary computational resources to meet

requirements when the software is completed, designers must often over-design a system by

including more computational power than the application requires. System-level estimation

uses an executable simulation of the application to gain insight into the computational

complexity before making hardware or software decisions, allowing designers to make

optimal decisions early in the design process.

2.1 System-level Design Overview

In order to discuss system-level estimation, a basic understanding of system-level

design (SLD) is necessary. In section 2.1.1 some common SLD definitions are presented. In

section 2.1.2 the basic system-level design refinement process is shown.

2.1.1 Definitions

A common terminology is useful when discussing SLD, since many of the concepts

are abstract. The following are terms used throughout the document.

Design Space – The design space represents the entire set of possible hardware and

software choices available for a design.
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Model of Computation (MOC) - A level of abstraction and associated rules for

modeling a system’s behavior. The system model generally starts with an abstract

MOC that is iteratively refined during design into less abstract models until a final

implementation model is achieved.

Behavior- A set of computational instructions having been separated from any

external communication. System-level models generally have many behaviors

representing the computational work performed by the system.

Processing Element (PE) – A processing element is a computing resource, either

software or hardware, that can be used to execute behaviors.

Weight table – A large set of metrics used to estimate the performance of a system-

level design.

2.1.2 System-level Design Refinement Process

Abstraction through MOCs is the key tool used in SLD to limit the complexity of the

system. By using estimation at each of the abstraction levels, the designer can make

informed design choices based on the application’s constraints, rather than guessing or over-

designing. The abstraction level of the design is directly related to the degree of accuracy of

the estimates that can be extracted. A standard set of MOCs are present in recent literature

and this paper will adopt the same abstraction terminology.

In this system-level design flow, a designer will create an executable system-level

design at the specification level. Once the functionality of the model has been verified, the

designer performs a series of refinements, which helps define the hardware platform. At the



www.manaraa.com

7

end of the design process, the designer has used profiling information at each level of

abstraction to make profile-guided design decisions, resulting in an implementable design.

Architecture
Model

Communication 
Model

Implementation 
Model

Application Specifications

Specification 
Model

RTL hardware 
implementation

Source code 
software 

implementation

Most 
Abstraction

Least 
Abstraction

Most 
Accurate

Least 
Accurate

 

Figure 1: Trade-offs between models of computation

At the specification level, no knowledge of the implementation platform is known,

but the functional behavior of the system is correct and can be simulated and verified.

However, at this level none of the operations have any cost associated with them. This level

of abstraction is untimed, meaning all operations occur in zero time. Although the

specification model does not contain timed estimates, it is not entirely useless for system-

level estimation. Using a data-flow graph constructed from this model, a designer can
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estimate the number of operations, the distribution of the operations in both size and type,

and the ability of the given application to utilize parallel computation.

The next level of abstraction, the architecture level, specifies the processing elements

available to the system. Estimates at this level are timed and can provide a number

representing the computational cost of executing behaviors on particular processing

elements.

At the communication level, timed communication buses are added to the design to

account for communication time between processing elements. The communication

protocol, bus width, and arbitration methods all are specified and appropriate behaviors are

added to the model. This refinement adds communication costs to the timing of the model.

Finally, the implementation level produces the partitioned design in the form of files

that each processing element’s toolset natively understands. This is generally C source code

for software targets and VHDL for hardware targets. At this point, cycle-accurate

simulations can be performed to obtain good estimates of system performance.

2.2 Weight-table Based Estimation Approaches

In this thesis we utilize a common estimation framework, which uses a static/dynamic

hybrid estimation approach. In this type of estimation, the static portion of the estimation

captures computational complexity for a single behavior, whereas the dynamic portion

captures the control flow of the function. Together these two metrics give the total

computational complexity of the function. In order to translate computational complexity

into a performance metric such as time, a mapping is created for each processing element. In

the following sections we describe each of these steps in detail, building the case for a
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categorical analysis of deficiencies in system-level estimation and demonstrating the need for

directed profiling.

2.2.1 Static Analysis

The static analysis begins with a source-level specification. The specification can

represent the system in any of the abstraction levels. Each basic block is statically analyzed

to generate an operation profile, which represents the computational complexity of the

function without consideration of the control paths. The operator and the type of operands

are considered together, and the frequency of each pair is counted and stored.

In the case of the estimator described in [24], the system-level design is specified in

the SpecC language. To begin profiling, the design is scanned for C operators and keywords.

An example of operators in this language are the common mathematical operators such as +,

-, *, /, and %. Since the cost of implementing many of the operators depends on the type of

operands used in the calculation, the profiler separates the statistics on each operator by type

of operand. For example, it is useful to know if a multiplication is being performed with

integer or floating-point operands, since the data type can greatly affect estimation results.

Several researchers have noted that performing static analysis in a high-level

language such as C is difficult because the compiler is able to optimize away portions of the

code. If the compiler is able to reduce the computational complexity of the code by replacing

or eliminating operators in the original code, then the static profile may not accurately

represent the post-compile computational complexity. To address this problem, the source

code can be transformed to lower-level C code [18] or to a virtual instruction set [11]. In
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both cases, this compilation allows a more accurate static analysis by accounting for compiler

optimizations.

2.2.2 Dynamic Analysis

To perform the dynamic analysis, the system-level behavior description is

instrumented at the basic-block level. The dynamic instrumentation is performed at the

basic-block level, and is similar to the way traditional profilers such as gprof [25] capture the

control flow of a system. The system is then compiled into an executable specification. The

executable specification is then run, and the profiling results are communicated back to the

estimator through a file or other communication method. By combining the static and

dynamic information for a particular basic block, the total number of times each operator-

operand pair is executed can be calculated.

In most cases, the execution of the specification will require a set of test data for input

to the model. Note that the selection of the test data is expected to represent typical test data

in order to optimize the system for the average case. However, choosing a test set which

exposes the average computational complexity may not be appropriate for a system with a

hard deadline, where the system has a specific performance requirement that must be met for

safety reasons. In a hard real-time system, worst-case execution time (WCET) estimates are

more appropriate [28]. The estimates dependence on choosing an appropriate set of test data

represents a point of weakness in this estimation approach, since a designer may not be able

to reasonably know whether the test data is appropriate for a system.

The execution profile generated by this process is useful immediately, as it contains

information about the computational requirements of a design. For instance, graphing the
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number of floating-point operations versus the number of integer operations can give the

designer an idea of the sensitivity of the design to adding an FPU to the implementation

platform.

2.3 Processing Element Characterization

As [7] describes, the execution profile vector can be multiplied by a vector mapping

operator-operand pairs onto execution time, in either cycles or absolute time. This

multiplication is mathematically simple and can be performed in a short amount of time. The

inner product of the vectors gives the total execution time spent in a particular basic-block.

Summing all the basic blocks together will give the execution time for the entire system.

This abstraction is quite powerful, and several researchers have noted that a vector can be

created to map operator-operand pairs onto power usage or area to obtain estimates of those

metrics from a system-level design. This thesis also recognizes that this generalization is

possible, but estimation of any factor other than execution time is outside the scope of this

thesis.

The preferred implementation of this framework, shown in Figure 2, is to create a

database of processing element characteristic vectors before estimation takes place, which

can be retrieved and used in a system-level estimate on demand. During design space

exploration, the cost of candidate architectures is estimated by combining the previously

generated behavior characteristics and the processing element (PE) characteristics.
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Figure 2: Preferred estimation framework

Generating the vector which maps operator-operand pairs onto execution time is a

difficult problem which is not extensively discussed in current literature. As a starting point,

[17] suggests that CPU processing elements should use the CPU's instruction set architecture

(ISA) manual to determine cycles-per-instruction. However, this approach results in

estimates which ignore caching affects, instruction-level parallelism, and other secondary

effects which have a large impact on execution performance. A designer can easily imagine

a system in which instruction-level parallelism may be the deciding factor in a design choice

between two processors. In this case, a characterization based on the ISA manual would

result in an incorrect design decision.

Another option for getting CPU operand timing is to create a large set of test-bench

data. If the test-bench is analyzed both statically and dynamically using the profiling

methods previously described, the computational requirements of the test-bench can be

derived. Additionally, if the test benches are then run on actual hardware or in a co-
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simulation environment, the actual performance of the test benches can be measured. Using

this data, you can then perform a linear regression to determine the best-fit values for each of

the operator-operand weights for the target platform in question

2.4 Summary

In this chapter we discussed the basic process of system-level design, the definitions

of models of computation, and the relationship between models of computation and

estimation. We also discussed the method by which we can estimate system performance by

using a static and dynamic analysis of the system-level source code.



www.manaraa.com

14

CHAPTER 3. EXECUTION PERFORMANCE ANALYSIS

In this section we introduce the execution performance factor categories, presented in

a novel way to group execution performance factors. Then, in the context of execution

performance factors, we introduce a performance analysis tool.

3.1 Categorical Analysis of Execution Performance Factors

3.1.1 Motivation

Accurate estimation in both the software and hardware domain, especially in a high-

level language such as C, is difficult because we must estimate the impact of a large number

of secondary effects. In order to clearly discuss these effects, a set of categories of execution

performance factors (CEPF) is needed. Without clearly defining all factors included in the

estimates, the estimates cannot be compared to each other. For example, if execution is

estimated using a weight table that is based on the instruction set manual of a processor,

those estimates cannot be compared to values measured from an actual platform because the

platform includes many more secondary timing effects that have a non-trivial influence on

the execution performance.

3.1.2 Categories of Execution Performance

The categories of execution performance factors are presented in Figure 2. The

purpose of this figure is two-fold. First, it provides a common terminology for discussing

estimation problems. Secondly, it encourages collaboration between the software and

hardware estimation communities by exposing commonalities in the estimation process.
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The top of Figure 2 shows the usual design process in action. A system-level design

is specified, refinements are made, and the specification is then updated to reflect the

refinements. Below the refinements are the steps toward implementation in two columns,

one each for hardware and software platforms. Each of the categories represents a set of

secondary factors that is present in the implementation, but is not explicitly present during

design space exploration.

Figure 3: Categories of factors affecting execution performance not represented at the
source-code level
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3.1.2.1 Platform Category

The first set of factors is the platform category of the target PE. In order to

implement the system-level design in a particular technology, it must be translated into a

language suitable for standard software or hardware toolsets. That translation can affect the

execution performance of the behavior.

Since most SLD languages are in a C-like format, the translation to a software target

is trivial and the execution is not greatly affected. However, for a hardware target, consider

the difficult problem of translating C code into VHDL. Several systems have been created to

perform this translation and are available as commercial products today [29][30][31]. These

translators, at a minimum, create a data-flow graph, calculate data dependencies, and

schedule the operations in a given C function to maximize the resources available and

minimize the schedule length in cycles. This minimizes the execution time of a specification

by allowing operations to run in parallel, a translation which is not available on a simple

software platform.

3.1.2.2 Up-Front Technology

The up-front technology category is the next area that affects execution time. After

having been translated, the specification is ready to enter the tool chain for the given

technology. In most cases, the tool a compiler for a software target, and a synthesis cycle for

hardware targets. In both of these scenarios, the tool can perform a large number of

instruction-level or register-transfer-level (RTL) optimizations as it generates its output.

Examples of the types of tool optimizations that fit in this category would be loop unrolling
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in a compiler, or unused bit elimination in a register that is too wide in a synthesis tool. In

either case, the execution time can easily be affected.

After the hardware bitstream or software image is created, a fixed penalty is imposed

by the platform and its surroundings. The clock frequency directly affects the speed with

which both the hardware and software targets perform their work. In addition, software

targets must fetch instructions over a bus of some kind, which may result in a stall of the

CPU core while it waits for memory to be accessed. On the other hand, in hardware routing

delays and delays imposed by the speed of the silicon used can affect the maximum clock

speed. The speed of the clock affects the execution performance in both hardware and

software implementation, but is not clearly modeled in some system-level languages.

3.1.2.3 Dynamic Platform

Next, dynamic platform factors which affect the execution time are considered.

These factors generally represent services provided by the platform that have varying degrees

of availability and can affect system performance. In the software realm, the real-time

operating system (RTOS) is considered a dynamic platform factor, whereas hardware

elements can be limited by bus availability. This category may require system-level

knowledge in order to provide estimates of the platform as a whole.

3.1.2.4 Dynamic Technology

Finally, dynamic technology constraints model the per-cycle factors affecting

execution performance. In a software target, this category includes the micro-architecture of

the CPU, including any sort of predictions, cache hit rate, data stalls, or similar effects. In

the hardware realm, an example of this type of factor is a pipelined hardware, in which the
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throughput, and consequently performance, is greatly affected by the architecture of the

hardware element. Note that pipelines can affect performance either positively or negatively

based on how many data items are presented to the core at one time, and the number of times

the pipeline must be flushed.

3.1.3 Summary

The categorical analysis of execution factors represents a contribution to the

discussion of execution parameters. Previously it was not always clear whether execution

estimates included all the factors necessary to compare estimates to real-world

measurements. The categories provide a means to communicate exactly which factors are

included in reported estimates.

3.2 SCE Performance Analysis Tool

The System-on-Chip Environment (SCE) tool is a system-level design environment

developed by the Center for Embedded Computer Systems (CECS) at University of

California, Irvine [19]. It provides a comprehensive set of system-level modeling and

analysis tools, which we used for SLD performance analysis in this thesis. This section

details how the performance analysis is performed at a high level, defines the CEPF

categories that SCE supports, and defines the level at which we were able to report execution

performance estimates.

3.2.1 SCE Overview

SCE, which stands for SoC Environment, is a SLD environment using the SpecC

language for SLD specification. A screenshot of the tool is shown in Figure 4. SCE allows
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the user to import functionally complete specification level designs which can then be refined

through the MOCs into an implementation level design. Also within SCE is a source-code

profiler implementation, the details of which are described in [18] and [24]. SCE uses the

preferred estimation model presented in Figure 2 to measure system-level performance,

meaning it has a processing element (PE) database which stores a weight table for each PE.

As described in section 2.3, a hybrid static/dynamic source code analysis is used to determine

the computational complexity of a behavior. Once the behavior is associated with a

processing element, the behavior characterization is combined with the PE’s weight table to

determine estimated execution performance.

Figure 4: SCE tool for system-level design
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3.2.2 PE Weight Tables in SCE

Of particular interest to this thesis is the PE weight table database. SCE provides a

weight table of two dimensions, one for the computation “type” and the other for the

computation “operation”. A type represents the type of the operands being worked on, while

the operation represents the operator performing the computation. For example, this

approach allows a designer to provide different execution estimates for integer and floating-

point multiplies.

When calculating a system-level estimate with this framework, the behaviors in the

system are first characterized using static/dynamic methods discussed in section 3. The

output of the tool is written to a tab-delimited file and includes the static, dynamic, and total

counts for the behavior characterization.

An unfortunate drawback of this approach is that it is not clear how to fill in this

weight table to provide useful estimates. A screenshot of the weight table entry screen is

shown in Figure 5.

There are a total of 17 types and 79 operations for a total of 1343 different weights.

How should a designer characterize a PE in this form to get good estimates?

One approach to fill in the weight table for a PE with meaningful values is to use the

instruction set architecture documents associated with a processor. However, this method

has several drawbacks:

• It only makes sense for software PEs. What would be the instruction set for a

hardware target?

• It does not account for secondary execution effects
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Figure 5: Weight table entry for a PE in SCE – 1343 parameters

• A human must perform an manual translation between the high-level SpecC operators

and the low-level assembly instructions, a process that is open to developer

interpretation

• A large weight table is required to perform estimates, even though it seems intuitive

that much of the information will be redundant

Despite its drawbacks, using the instruction set architecture on software PEs as a first-

pass estimator provides more value than no estimate. While [10] and [18] disagree on the

fidelity of this approach, it seems intuitive that the instruction set should provide estimates

that correlate with the execution time. However, [10] provides a least-squares estimation that

provides much better accuracy which we adopt for testing.

3.2.3 Summary

In this chapter we introduced a novel categorization framework for factors affecting

system-level performance. This can provide a common way to discuss execution
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performance and provides insights into system-level performance factors affecting hardware

and software. We also introduced the SCE tool for system-level design. We showed that it

provides a useful environment for the study of system-level estimation techniques. A PE

database with weight tables for each PE can be created using the SCE tool. These weight

tables can then be used in system-level estimates to investigate design decision fidelity in

multiple scenarios.
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CHAPTER 4. MINIMAL CHARACTERIZATION

In this chapter we show that a large portion of the performance information is

contained within a small set of source-level operators, allowing us to reduce the number of

metrics needed to estimate performance. We evaluate the fidelity of the minimal

characterization against a large benchmark, finding that it can indeed provide good fidelity.

4.1 Motivation

Our goal is to obtain reasonably accurate system-level performance estimates at a

high level. Low-level performance information can be used in high-level designs to estimate

high-level performance. However, it is desirable to limit the amount of low-level

information needed. Limiting the amount of performance metrics allows the estimation to

occur more quickly, a trait which is important when the design space is very large.

Additionally, collecting performance information for PEs is expensive. Performance

characteristics for PEs that do not physically exist may require time-intensive simulations,

while PEs that do physically exist may require extensive test setups to acquire accurate

timing. Finally, complete solutions for all performance characteristics require a large set of

benchmark applications, a suite of which does not currently exist in a system-level format.

Figure 6 shows the spectrum of estimate accuracy for system-level design. Low-

level-unaware estimates do not include any secondary estimation effects; this includes many

currently reported models which use instruction set cycle timing. Minimally characterized

models use measured performance data to create a model with enough accuracy to make a

design decision; however these models omit a large number of characterization
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Figure 6: Estimation accuracy spectrum for system-level design

metrics which are unimportant to the design decisions. Completely characterized models are

generated from measured performance, just as minimally characterized models are generated.

However, extra effort is required to determine all performance metrics, even those

unimportant to design decisions. Creating a cycle-accurate timed model requires a large

amount of design effort, but it has even better accuracy than a weight-table based method

because it accurately tracks the state of the system. In this section we focus on the creation

of the minimally characterized model.

4.2 Experimental Setup

To test the feasibility of using a subset of the source-code characteristics to estimate

execution performance, a JPEG (Joint Photographic Experts Group) encoding example

provided by UCI’s CECS group was used [26]. The JPEG encoder represents a real-world

example and utilizes many of the SpecC language constructs used in the estimation process,

such as parallel execution and pipelined execution, providing a good test bed for execution



www.manaraa.com

25

estimation evaluations. We characterize the JPEG encoder using the SCE tool introduced in

section 3.2.

During performance evaluation of the code, the SCE tool calculates the number of

times each operator is executed by the design. Some of the operator labels can be cryptic, so

the definitions for operators used in this section are shown below in Table 1.

Operator Description
#i Variable Access (read or write)
#1 Constant Access (read or write)
() Function call
[] Array access
{} Basic-block

Table 1: Important operators used in source-level estimation and their descriptions

4.3 Applying Minimal Characterization

As a first step, the top-level behavior of the JPEG encoder was characterized in terms

of operator frequency by the static-dynamic code analysis tool built into the SCE

environment. This operation does not require any processing elements to be defined because

we are simply gathering statistical data on the control and computational complexity of the

JPEG encoder. The SCE environment can be configured to produce operator estimates in a

tabular text-file form. A portion of the JPEG design’s operator characteristics as reported by

SCE is shown in Figure 7.

The listing in Figure 7 has two major sections: the first represents the total operation

execution count for the entire run of the system, labeled “operation result”; the second is the

“static operation result” section, which is a simple count of the operations in the function
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…

********************
Name Number Op_s Op_d Tr_s Tr_d Mem_s Mem_d
Main 1 0 7529246 0 0 3139 0

Operation result:

Listed by operation types:
void #1 #i () [] f() . …
22680 877284 2787429 779189 488922 103310 61142

Listed by data types:
bool char unsigned char short int int …
132671 146168 118440 18 7700231

Static Operation result:

Listed by operation types:
void #1 #i () [] f() . -> p++ …
1 337 954 236 100 184 138 3 42

Listed by data types:
bool char unsigned char short int int …
81 40 24 12 1470

…

Figure 7: Partial listing of JPEG encoder source-code characteristics

without regard to control structures. Each section also provides a breakdown of the data

types associated with each operation. However, this thesis ignores any data-type-dependent

effects on execution performance. We will be using the “operation types” sub-section of the

“operation result” section, as this represents the total execution profile of running the

benchmark.

At this point, we have to determine how to rank the operations in order of importance

to our performance estimate. The assumption we will use in this paper is that operators that

are executed the most are also the operators that are most important to our performance

estimate. We acknowledge that this may not be a valid assumption in situations where some
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operators are much more expensive than others, but an experiment to determine a better

ranking system is outside the scope of this thesis.

After ordering the operators by frequency of execution, we applied the minimum

characterization hypothesis by removing the operations that were executed the least number

of times, effectively trading off estimation accuracy for a smaller set of operations. Here we

chose to remove all but the top five most frequently executed operators, which are shown in

Table 2. 

 

Operation Frequency
#i 1325344
#1 418343
() 382321
[] 244076
= 230355

Table 2: Highest frequency operations in the JPEG Encoder

We then wanted to view our system estimates using the minimal estimation and

compare the minimally characterized estimates with the estimate we would obtain from using

a completely characterized model. Since we have not yet shown how to derive operator

weights from actual performance metrics, we arbitrarily pick weights for a fictional PE. In

this PE, the actual cost of each operator is arbitrarily picked as 10.0 units. We then created

five more PEs: the first PE only included weights for the top operation in Table 2, the next

PE included weights for the top two operations, and so on up to a PE that included weights

for all five operations. Because the weights of all other operations are set to 0.0 in these PEs,

all other operators are effectively eliminated from the equations. The PE configuration is

shown in Table 3.
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PE Name #i #1 () [] = All others
All Operations 10.0 10.0 10.0 10.0 10.0 10.0

Top5 10.0 10.0 10.0 10.0 10.0 0.0
Top4 10.0 10.0 10.0 10.0 0.0 0.0
Top3 10.0 10.0 10.0 0.0 0.0 0.0
Top2 10.0 10.0 0.0 0.0 0.0 0.0
Top1 10.0 0.0 0.0 0.0 0.0 0.0

Table 3: PE configuration for minimal characterization of JPEG encoder

Using these PEs, we re-estimated the system execution performance and arrived at the

estimates shown in Figure 8. The graph shows that a large percentage of the system

execution time is accounted for by including only the most frequent operators. However, we

need to calculate the fidelity of the approach to know whether the technique is truly valid.

An analysis of the fidelity of this approach is presented in the next section.

Figure 8: Estimated execution times for varying weight table configurations, grouped by test
iteration
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4.4 Fidelity of Minimal Characterization

In order to evaluate the fidelity of our process, design decisions made using estimates

which were completely characterized must be compared to decisions made with the

minimally characterized model. We considered a design choice between two processing

elements, one a software PE and the other a hardware PE, which we label SW (software) and

HW (hardware). This represents a common system-level design question: “Can the

performance goal be met using a cheaper software solution, or is a more costly hardware

solution necessary?”

To evaluate the fidelity of our approach, we duplicated an experiment which is

reported in [7] by the CECS group. In this experiment, the JPEG encoder is evaluated for \

Configuration
#

HandleData Quantization DCT Huffman
Encode

0 SW SW SW SW
1 SW SW SW HW
2 SW SW HW SW
3 SW SW HW HW
4 SW HW SW SW
5 SW HW SW HW
6 SW HW HW SW
7 SW HW HW HW
8 HW SW SW SW
9 HW SW SW HW
10 HW SW HW SW
11 HW SW HW HW
12 HW HW SW SW
13 HW HW SW HW
14 HW HW HW SW
15 HW HW HW HW

Table 4: Configurations of JPEG hardware
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performance by assigning four behaviors to the SW and HW PEs in all 16 different

configurations. The experimenters reported an “actual” execution performance, which was

derived from cycle-accurate simulation, and an “estimated” execution performance which

was calculated using a weight-table-based estimation method. The weight tables used in [7]

were low-level-unaware, created using estimates of timing for each operator from product

documentation, and thus we will label these estimates the “low-level-unaware model”. We

performed the same experiment, using a “low-level-aware model,” which was trained using

the results from the “actual” model. Table 4 shows each configuration, numbered to

facilitate referencing.

4.4.1 Least-squares Model Generation

To generate the low-level aware model for estimation, we use a least-squares fitting

technique for software estimation similar to the technique used in [10]. The mathematical

model we needed to solve is shown in Eq. 1. The first matrix represents the operator

characteristics for each of the 16 configurations given in Table 4. Each of the opSW and

opHW values is a column-vector representing the execution profile for each configuration.

The weightSW and weightHW represent the operator weight unknowns that we need to

solve. The actTimes value is a row-vector with all of the measured performance times.

Using the least-squares method, we then solved for the weights of all operators and inserted

them into our estimation models as the low-level-aware model.
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[ ]actTimes
weightHW
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...... (Eq. 1)

After generating the low-level-aware estimation model, we then used that model to

re-estimate the execution performance of each of the 16 system configurations. Somewhat

surprisingly, the resulting model characterizes the data well. The low-level-unaware and -

aware models are compared against the actual execution performance in Table 5. The results

demonstrate that our model predicts the execution time over two orders of magnitude better

than the model that has no low-level knowledge. Additionally, our model uses only five

characteristics of the source code to characterize the performance, whereas the other model

had a sparsely filled estimation table that had over 500 operational costs defined. The

estimates are shown on the graph in Figure 9. 

 

Max Error (ns) Mean Error (ns)
CECS model 10910000 3717500
Low-level data with
minimal
characterization

446250 1.6 * 10-8 

Low-level data with
subset of configurations
used to train model

66000 4875

Table 5: Models using low-level information compared to traditional model
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Figure 9: Error in estimates for low-level-unaware and –aware models

Having shown that a good fit is possible using only a small number of operators to

characterize the system, we then wanted to see how the model would predict the performance

if it was trained using only a subset of the total configurations. This is because it can be

argued that estimating the same behaviors that the model was generated from can offer

deceiving fits. After experimentation, we found if we choose the subset of configurations

carefully so as to include each behavior on each PE at least once, we were indeed able to

generate a model from a subset of the configurations and use it to accurately predict all

configurations. We obtained a good fit using configurations 1, 4, 7, 10, 11, 13, and 16 for

training the model. Using this model, the execution performance of the system was again

estimated, and the results were nearly as good as the earlier results, proving that the model is

capable of accurately predicting execution performance for configurations it has not seen
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with very good accuracy. The results of this testing are shown in Figure 9 and Table 5

alongside the earlier results for comparison.

4.4.2 Fidelity Analysis

In order to define fidelity, first consider two design configurations. Using the

estimated performance, the designer can choose the design configuration that performs the

best. The designer can make the same choice by considering the actual performance of the

system. If the design choice is the same using either the estimated performance or the actual

performance, then the estimate has enough fidelity to accurately make design choices. By

ranking the design configurations in order of performance, best to worst, any of the

configuration rows can be selected. The configurations above that choice perform better, and

the choices below perform worse. The same configurations should be above and below any

chosen configuration for both the actual and estimated performance measures in order to

achieve 100% fidelity. In some situations all the comparisons between configurations may

not represent choices the designer needs to make, in which case the rankings may not be

exactly the same, but the fidelity will still be 100%.

The fidelity of the low-level-aware model was compared to the fidelity of the

estimates provided in [7] by simply ordering the configurations by estimated performance.

The accuracy of the model can be sacrificed only if the reduced accuracy does not affect the

relative performance of a design alternative when compared to other design alternatives. The

results of this check are shown in Table 6. Using the table, we can see that the fidelity of the

low-level-unaware model is correct in all cases except for configurations 15 and 8, whereas

the low-level-aware model achieves 100% fidelity by matching all of the actual configuration
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Actual Low-level-unaware Low-level-aware
16 16 16

14 14 14

15 8 15

8 15 8

13 13 13

6 6 6

7 7 7

5 5 5

12 12 12

10 10 10

11 11 11

4 4 4

9 9 9

2 2 2

3 3 3

1 1 1

Table 6: Design configurations ordered by performance from best to worst, shown to
demonstrate fidelity

rows. This demonstrates how a low-level-aware model can achieve higher fidelity than a

low-level-unaware model.

4.5 Summary

In this section we showed that minimal characterization is a promising tool for

estimating system-level designs. In the given example, the accuracy of such a model was

orders of magnitude better than a low-level-unaware model using many more operator

weights. The fidelity of the approach was also shown to be better than a low-level-unaware

model, showing that low-level-aware models can provide better design decisions in at least

one case.
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CHAPTER 5. PERFORMANCE DATA FOR LOW-

LEVEL-AWARE ESTIMATION

In this chapter, we apply the minimal characterization to several system-level designs.

We implement a set of benchmark programs in both hardware and software and gather

performance metrics. We then use these performance metrics to generate a minimally-

characterized weight table to predict system performance.

5.1 Creation of Benchmark to Gather Real-world Statistics

In order to evaluate estimation characteristics, a benchmark is needed as a baseline to

characterize a given behavior in several target implementations. Several benchmark suites

tailored to the embedded community are available such as the EEMBC [32], MiBench [33],

and MediaBench [34], but none is provided as a system-level specification. We see the lack

of a system-level benchmarking suite as a major deficiency in the field. The delay in

producing a system-level benchmarking suite is likely due to the lack of agreement on a

common implementation language, however the recent standardization of SystemC [35] may

encourage the creation of such a testbench suite. We decided to adapt a small subset of the

MiBench benchmarking suite based on constraints given in the following section.

5.1.1 Target Platform

In order to apply the estimation procedures to real-world targets, we used real

hardware to collect some of our estimates. The platform we targeted was an FPGA (field-

programmable gate array) development board from Digilent called the XUPV2P. This type

of FPGA development board is ideal for system-level design experiments since it
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incorporates a Xilinx Virtex II Pro FPGA. The Virtex II Pro includes two PowerPC CPU

cores embedded in the FPGA fabric, allowing an experimenter to implement hardware and

software systems in the same device. In the following experiments, we used the FPGA fabric

as our hardware target and the PowerPC CPU core as our software target.

5.1.2 Constraints for System-level Benchmarking

The MiBench suite contains a large number of benchmarks for a variety of

applications. Only a few of these benchmarks were straightforward to adapt into a system-

level specifications based on the limitations of the SCE profiling tool and system-level

language, discussed below. To choose the benchmarks, we created the following list of

criteria:

� The software benchmark should be relatively easy to port to a hardware

implementation, preferably through a CoreGen core implementing much of the logic

for ease of translation.

� The benchmark should not rely on any standard C library math functions. This

criterion was necessary because of a limitation of our profiler, namely that the SCE

profiler does not profile behaviors that include any function calls. SCE requires that

all functions to be profiled in a design be “clean.” This means that functions must

either be entirely function calls or entirely basic operations, a separation which keeps

behaviors as either purely computational or aggregating, but not a combination of the

two types [23].
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� The number of benchmarks should be sufficient to solve a meaningful linear

regression on a subset of the characteristics. For the requirements of this paper,

meaningful is defined to be three benchmarks.

5.2 Benchmark Selection and Characterization

After applying these criteria, three benchmark functions were identified: square root,

degree-radian conversion, and a DCT (discrete cosine transform) function. The square root

and degree-radian conversion benchmarks are among the simplest benchmarks in the

MiBench suite, and in fact the DCT implementation was not even a part of the MiBench suite

but was brought in from the CECS JPEG encoder example to provide enough data the

research in this section. Once selected, the benchmarks were manually translated into the

system-level design language used by SCE. SCE was used to analyze the designs and

calculated the dynamic operation execution statistics for each of the designs. The operator

characterizations for each benchmark are shown in the following figures. In is notable that

the characterizations are dominated by variable and constant accesses.

Figure 10: Square root benchmark operation frequency
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Figure 11: Radian-degree benchmark operation frequency

Figure 12: DCT benchmark operation frequency

5.3 Benchmark Implementations

In addition to the system-level model used for operator characterization, each

benchmark was also refined to both a hardware and software implementations. For the

hardware domain, optimized cores from a Xilinx-provided design library were used. In the

software domain, the original C-source from MiBench or a manually translated C-source

benchmark was used. The implementation performance of each of these designs was then



www.manaraa.com

39

measured using techniques described in the next sections. Using the implementation

performance along with the behavioral operational characteristics occurring most frequently

in the behavior, we applied the minimal characterization methods shown in chapter 4 and

were able to solve for a subset of the performance characteristics of each processing element.

5.3.1 Hardware Estimation

For the hardware target, performance was estimated by synthesizing the VHDL

design. As part of the process of synthesis, the Xilinx synthesis tool estimates the maximum

clock frequency at which a design will run. We use this maximum clock frequency estimate

as our performance metric for hardware implementation. Then, to determine the number of

clock cycles a hardware implementation of the benchmark would have to run, we counted by

hand. The fact that we are not actually running the hardware implementation on the FPGA

means that our hardware estimate only includes the up-front technology cost for the hardware

implementation, as discussed in the CEPF sections of this thesis. The model used to gather

performance characteristics in hardware is shown in Figure 13.

Figure 13: FPGA benchmarking setup



www.manaraa.com

40

5.3.2 Software Estimation

For the software target, performance was measured using the cycle counter register built into

the PowerPC 405. This register accurately reflects the number of cycles elapsed from the

time that the processor began running. By taking the difference of the cycle count before and

after the candidate function was executed, we can determine the real time taken to execute a

function. Utilizing the CEPF categories presented in this thesis, this is a measurement of the

up-front technology, fixed platform, and dynamic technology execution characteristics,

meaning that the estimates include the effects of compiling, the clock frequency, instruction

and data fetch times, and cache and other ILP (instruction-level parallelism) effects. The

benchmarking setup used to test software performance is shown in Figure 14. Note the

software case is more complicated than the hardware case, as the fetch patterns of the cache

as well as the load of the bus directly have an impact on the speed at which the execution

occurs. All software performance measurements were taken using the cycle counter register

built into the PowerPC 405 architecture, ensuring that any measurement overhead was

removed from the final results.

Figure 14: Software benchmarking setup
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5.4 Calculation and Analysis of Operand Costs

To perform the experiment, both hardware and software implementations were

measured for performance. The performance numbers were recorded both in cycles and

time. Assuming that the most frequently occurring operations are most likely to affect

execution performance, a subset of the operations was chosen to maximize the accuracy of

the estimate. Since we had three benchmarks, all of which had different computational

characteristics, all of the operators were not present in all of the benchmarks. In order to

maximize the fit of our estimation model, we chose a subset of the operations which were

used in all three benchmarks. The operations “#i” (variable access), “#1” (constant access),

“{}” (basic block), “()” (function call), and “*+” (multiply-accumulate detection) were

identified and used. The results of the minimal characterization are shown in Figure 15 and

Figure 16. The residuals for the models are less than 1.0*10-9, indicating a good fit for the

model.

One notable feature of these figures is that the cost of several of the operators is

negative, which seems to indicate that a behavior will actually take less time to execute if it

has more of a particular operator in it. However, it is important to remember that we are not

solving for the operator costs here; these simply represent coefficients of an equation to fit a

line to the data.
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Figure 15: Estimated operator cost for hardware implementation

Figure 16: Estimated operator cost for software implementation

These models would then be used to estimate system performance in cycles, as given

in Eq. 2 and Eq. 3 for hardware PE and software PE, respectively. Using the coefficients and
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combining the computational complexity, you can arrive at estimates for the total system

performance, S.

0.249842*N#i + -0.05486*N#1 + 0.015796*N{} + -0.17576*N() + -0.08744*N*+ = S Eq. (2)

449.1195*N#i + -673.382*N#1 + 75.40405*N{} + 376.2772*N() + -72.288*N*+ = S Eq. (3)

5.5 Summary

The models generated in this chapter are derived from real performance information

from hardware and software targets. Thus, the models will correctly account for secondary

execution performance factors as described in section 3, making the models more accurate.

These models are also able to generate estimates more quickly, because they use a small

number of operators.

Although we had wanted to be able to separate out the secondary execution factors in

each weight table, the difficulty in creating a system-level benchmark suite prevented that

work. As noted earlier, we the creation of a system-level benchmark suite as imperative to a

system-level estimation tool. Generating this suite is a source of important future work, and

once such a suite is created, an more detailed analysis of the secondary effects of execution

performance can be conducted and reported.
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CHAPTER 6. RELATED WORK

Source-level estimation is a mature topic that has been explored extensively for software

targets, but less extensively for hardware targets. System-level estimation is a relatively new

field, with new challenges in combining hardware and software estimation.

6.1 System-level Estimation

The team at Center for Embedded Computer Systems (CECS) at the University of

California, Irvine has created a tool for system-level estimation, reported on in detail in a

Ph.D. thesis [24] and more generally in work on retargetable estimation [7] and [8]. This

work encompasses a broad scope of estimation, including the estimation of power,

communication time between processing elements, synchronization between elements, and

other performance metrics. This thesis uses the framework presented in their work as a basis

for system-level estimation. We focus specifically on improving the execution performance

estimation in this thesis, however the ideas should also be applicable to other performance

metrics. The CECS estimation model does not include a discussion on high-level estimation

of secondary execution effects, which is presented in this paper. At least one other paper

[13] has mentioned this limitation, since it limits the ability to account for memory

performance in a software PE and data fetches cannot be timed.

Several researchers have identified the compiler and translation from high-level

languages to a low-level language as a source of noise when trying to create good estimation

models. One approach to this problem is to first translate the high-level source code into an

intermediate representation, with all compiler-level optimizations such as loop unrolling and

elimination of unused variables already applied. The authors of [9] take this approach, using
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the LANCE [18] compiler to turn the code into a form they term “three address code”. Each

computation is separated into its own line so a one-to-one mapping between source code and

assembly is possible. The researchers group operators into five categories: arithmetic,

logical/bitwise, mult/div/mod, comparison, load/store. T. Kempf et al. [13] build on the

work in [9] using an the instrumented version of the code that is compiled to a virtual

processor, adding the ability to explicitly model memory timings between processing

elements. The reported results using this method are quite accurate, but the simulation time

is only a single order of magnitude less than cycle-accurate simulation, which makes the

solution infeasible for early design space exploration.

Another similar approach to [13] and [9] is to create a virtual instruction set and

compile the system-level design into the instruction set. In [11], estimation is realized by

compiling C source code to the development machine's assembly code (to see high-level

compiler optimizations), then translating the assembly back into low-level C with timing

annotations. The authors also consider target compiler optimizations and target hardware

optimizations. This thesis does not use this technique, but instead categorizes compiler and

assembler optimizations as one of many factors affecting execution performance. Although

this thesis was unable to explore individual execution factors, it assumes that these secondary

factors can be accounted for in the weight-table based estimation approaches. A hybrid

approach can also be imagined that would provide the benefits of both approaches. [22] also

attempts to account for tool-specific optimizations but stops short of a general categorization.

The authors of [5] use MUSIC and GEODESIM to generate RT-level models of their

test systems and to co-verify their results, respectively. Their example application, a motor

controller, is specified in a system-level design language called SA-C. The design is
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partitioned into two different processors and a hardware target with claimed accuracy around

2.5%. They describe the notion of profiling hardware targets at RT-level and back-

annotation as the first two steps in a 4-step codesign sequence. The estimation uses both

static and dynamic characteristics of the application behavior, and requires the creation of a

database with profiling data from all possible design alternatives, which is similar to the

approach take in this thesis.

As the field of system-level estimation grows, many tools are being created and

abandoned. [6] provides a good overview of available toolsets, organized in two ways: by

the portions of the Y-chart methodology they address, and by their level of abstraction.

Many toolsets are available for system-level modeling.

Tools in [12] and [14] use estimation as a step in automated partitioning schemes.

The partitioning decision in [12] is based on estimates of latency in both hardware targets

using a directed acyclic graph of control flow, and software targets using a simple sum of the

instruction timings. Presumably the software timings come from a processor manual. The

algorithm uses a fixed platform for the target hardware, consisting of a FPGA and a CPU

connected through a bus. In [14] the presented approach relies on choosing a target

architecture and compiling or synthesizing behaviors for these architectures to derive

performance estimates.

In this thesis we use the SpecC [36] system-level design language, however SystemC

[35] is another system-level design language that has been gaining traction in recent years,

especially with its recent standardization. The language is relatively new, however tool

support is coming from some vendors and presumably system-level estimation will follow.

[21] presents a SystemC-based system-level performance estimation method, using execution
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dependencies to determine high-level synchronization points in the design. They define two

types of execution synchronization, namely R/E (execution waiting for the reception of data)

and E/S (sending of data waiting for execution). Using these concepts they are able to

demonstrate a high-level performance estimate for data-dominated systems across multiple

candidate architectures. We expect to see more System-C tools for estimation in the near

future from vendors which should accelerate the rate at which system-level estimation

research can proceed.

6.2 Hardware Estimation

Estimation work in the hardware domain is usually focused on power estimation and

FPGA resource utilization estimation. [1] can predict performance for FPGA designs using

floor plan, wire-delay, and clock path estimation, but requires synthesis to be performed and

a RT-level description of the system available prior to estimation, which is costly during

design space exploration. Presenting a partial solution, [3] predicts CLB usage for FPGA

designs using a partially synthesized design, where the estimator attempts to predict the

scheduling and binding of variables to speed estimation. However, this work is relatively

limited to controller-type applications with binary-coded states.

Source-level performance estimation of hardware generally revolves around the

generation of a data-flow or control-flow graph and estimating the number of cycles

necessary to perform a given amount of work. [15] presents a high-level clock-period

estimator for hardware targets by modeling the hardware ports as resources that must be

scheduled. [16] demonstrates hardware estimation using generated CDFGs (control/data

flow graphs) to expose parallelism, but a fairly restrictive fixed hardware interface. They use
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integer linear programming (ILP), a technique borrowed from the popular software worst

case execution time (WCET) estimator Cinderella [28], to estimate the hardware

performance. This thesis does not include a measure of the control-flow of a hardware

system, a point which is noted in future work and which we anticipate would lead to better

hardware estimates.

Matlab [27] does not meet many definitions of system-level design language, since it

cannot provide separation between computation and communication, among other

requirements; however some researchers use it for high-level system specifications. [20]

describes a method of gathering trace data from the execution of a high-level Matlab system

model and using it to estimate the performance and size of the system on a hardware target.

Each operation performed on a given bit-width of variables in the model is mapped to area,

latency, and service rate. Their experiments use a data flow graph (DFG) to schedule the

resulting system and determine an estimate for execution time for FPGA implementation.

6.3 Software Estimation

The best paper this author found on source-level software estimation was [17]. In

their paper, the researchers provide a comprehensive mathematical model for estimating

software execution. They break statements written in C into pieces called atoms, each of

which is given a weight. The author also provides factors to account for compiler

optimizations and other tool-dependencies on a per-atom basis. This work provides a good

formal basis for software performance estimation. This thesis uses an estimation framework

that is a subset of the framework presented in that paper.
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[10] describes multiple software performance estimation techniques, comparing and

contrasting several of the promising methods. The authors have a set of 35 programs they

use to benchmark their analysis techniques, using a virtual instruction set for analysis. They

first consider a simple least-weighted squares solution for mapping the behavior execution

into cycles, however they find that its applicability is strictly limited to applications from the

same domain, suggesting that the model predicts execution time only for programs that

resemble the program used to generate the model. This issue was also noted and discussed in

[2]. The authors then consider stepwise multiple linear regressions, where each regression is

based on an application domain. The authors divide their tasks into one of two domains,

either control- or data-dominated. Using a prediction metric of the ratio of “if” instructions

to total instructions, they characterize the applications into control-dominated and data-

dominated domains. The authors then conclude that they can achieve higher accuracy by

applying different models to each of the two domains. Through statistical techniques, they

are able to refine the predicting models from 25 dimensions down to 4 dimensions in the

control-dominated case, and to 1 dimension in a specific data-dominated case. This thesis

uses the least-squared approach presented in that paper for our estimates.

Another limitation of the estimation framework used in this thesis is the restriction

that no library or function calls may be used inside of a profiled behavior. This is because,

for many libraries, the source code is not available for profiling. This issue is discussed for

software targets in [4], which attempts to improve software estimation by analyzing and

characterizing the performance characteristics of library functions and system calls. Their

work claims that a large majority of these functions can be stochastically modeled by

conducting performance tests with different input data.
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CHAPTER 7. CONCLUSION AND FUTURE WORK

In this thesis we have presented an evaluation of a weight-table based approach to

estimation for system-level design. System-level design is becoming more complex in new

embedded designs, and thus, we need to have good estimation frameworks to guide

designers. While software and hardware estimation have been explored, system-level

estimation has been slower to mature.

In this thesis, we argue that low-level information at high-level abstractions of the

system design can provide better estimates than low-level-unaware estimates. We presented

a minimal characterization method that makes accurate characterization feasible in a system-

level design environment. The feasibility of this approach is two-fold: first, requiring a

smaller number of metrics to be collected allows designers to spend less time measuring

running simulations or measuring device performance; secondly, the time spent in the

estimation algorithm is reduced by fewer metrics, making system-level design exploration

faster. For the example presented in this thesis, we were able to clearly show that the

accuracy and fidelity of low-level-aware estimates at high levels of abstraction were much

more accurate with an increase in fidelity.

Finally, we presented a categorical discussion on secondary execution factors that

have not been formalized. In previous work, these effects have been accounted for in extra

coefficients and weights in estimation equations, but a top-down discussion of the effects was

missing.
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7.1 Future Work

As noted elsewhere, this thesis clearly showed that some areas of the field need

improvement. This thesis identified the following areas of work:

• A system-level benchmark suite is necessary for future work comparing the system-

level estimates to low-level performance values

• This thesis was neither able to explore the control or data flow graphs of hardware

targets for estimation, nor was it able to group computation by the type of operator.

Both of these factors could greatly increase the accuracy of system-level estimates.

• The measurements of execution performance made in this thesis certainly have some

measurement noise. The effect of this measurement noise on system-level estimates

is unknown and could be explored and quantified.

• With a larger set of benchmarks than was presented here, enough data should be

present to separate the weight-tables into each of the categories of execution factors

presented in this paper. With this data, we could then build a framework to

characterize and estimate using all secondary execution factors.
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